ホウ素中性子捕捉療法(BNCT)の治療効果を リアルタイム計測するSPECT装置の開発とその高度化研究 プロジェクト 責 任 者 大阪大学大学院工学研究科 環境エネルギー工学専攻 教授 村田 勲 #### プロジェクト概要 小ウ素中性子捕捉療法(BNCT)は、世界で普及が望まれている新しいがん治療法である。しかし、その治療効果を治療中(中性子照射中)に知ることは困難であることが知られている。日本中性子捕捉療法学会では、ホウ素の中性子反応に伴い放出される即発ガンマ線(478keV)をSPECT的に計測することで、その場観察することが提案されているが、その技術の実現は難しい。通常のSPECTと異なり、BNCTは診断ではなく治療だからである。具体的には、①治療に使うPrimary放射線は中性子であり、Secondary放射線である非常に強度が弱いガンマ線を精度よく計測する必要がある。しかも、②治療においては、様々な制約が存在するため、X線CTやMRIなどの診断とは異なり、計測機器を360°動かすことができない。以上のことから、高精度測定をすることは極めて難しいとされている。技術的困難性は非常に高いが、日本が世界を主導している加速器BNCTが治験通過した今、その治療効果をその場観察できる装置(BNCT-SPECT)の実用化を進めることが急務となっている。 ### 開発状況(上記の問題に対する解) ①下記の科研費のサポートにより、下の2つの表に示す通り、世界で初めてBNCT臨床医が示す性能(空間分解能5mm、精度5%)に到達する設計を実現した。 - 基盤研究(B) 22360405 (2010年~2014年)、代表 「BNCTのための治療効果リアルタイム測定用SPECT装置の開発研究」 - 基盤研究(B) 15H04242 (2015年~2019年)、代表 「BNCTのためのホウ素濃度比(T/N: 腫瘍・正常細胞比) リアルタイム測定手法開発」 - ②「孫正義育英財団」の援助により、限定された撮像角度でも、Bayes推定法を用いることにより画像再構成ができることを確認した。 H. Inamoto et al., "A New Image Reconstruction Technique with Limited View-angle Projection Data for BNCT-SPECT"2020 IEEE NSS MIC, Boston, USA, M-08-149 (2020). - ③精度のさらなる向上のため、同時計数、非同時計数、 Veto検出器を同時使用した、S/N比向上化を進めた。 (特願 2022-210091「BNCT治療効果リアルタイム計測 用SPECT装置」) ④2023年度は、経産省のサポートにより、プロトタイプのSPECT装置の開発を進めた。また同時に、実際の装置のデータから画像を再構成するシステムの開発も進めた。これらについては、名古屋大学の加速器BNCT装置により実証実験を実施する予定。 BNCTとは ホウ素10(10 B)を含有する薬剤(10 BPA,BSH)を点滴により投与し、腫瘍にのみ蓄積させる。外部から中性子を照射することで上記の核反応(10 B) \rightarrow α + 7 Li)を誘起する。発生する荷電粒子(10 A線と 10 Li粒子)により腫瘍細胞を選択的に死滅させる。荷電粒子の飛程が短く、ホウ素が腫瘍細胞にのみ蓄積した場合、隣の正常細胞を救うことができるため、他の放射線治療よりも非常に切れ味が鋭い(腫瘍細胞選択性がある唯一の)治療法と言われている。 BNCT-SPECTとは 上記の反応により生成するプロから即発的に放出されるγ線をSPECT装置により計測することで、上記の反応の発生数が3次元的に計測できる。この反応の個数は、そのまま治療効果であるため、リアルタイムで治療効果を知ることが可能になる。 | | | | | | | | Table 6 Design result and performance. | | | | |---|-------------------------------|------|-------------------|------------------------|-------------|----------------------|--|--------------------------------|--|--| | Table Design annuals of ODEOT for DNOT in the small | | | | | | Design item | | Design result | | | | Table Design examples of SPECT for BNCT in the world. | | | | | | | Material | GAGG(Ce) | | | | Author | Institute | Year | Detector element | | | Scintillator | Dimensions | 3.5 x 3.5 x 30 mm ³ | | | | | | | Material | Size | Material H | - Collimator | Material | Tungsten | | | | Kobayashi, T. | Kyoto University | 2000 | CdTe | (not mentioned) | Tungsten | | Hole pitch | 4.0 mm | | | | Ishikawa, M. | Hiroshima University | 2001 | BGO | 5 mm Φ x 5 cm | Heavy metal | | Hole diameter | 3.5 mm | | | | Minsky, D.M. | San Martin University | 2011 | LaBr ₃ | 1 in x 1 in ϕ | Lead | | Length | 26 cm | | | | Hales, B. | Tokyo Institute of Technology | 2017 | CZT | 1 x 1 x 1 cm | Lead | Desig | n goal item | Performance (Goal) | | | | I. Kanno | Kyoto University | 2019 | TIBr | 0.5x0.5x1cm | Tungsten | Statistical accuracy | | 4.4 % (5 %) | | | | Murata, I.*1 | Osaka University | 2019 | GAGG | 3.5 x 3.5 x 30 mm | Tungsten | Spatial resolution | | 5.1 mm (5 mm) | | | | *1 From the present result, *2 From detector pitch | | | | | | | | | | | 結果と性能。下記論 文から引用。 I. Murata et al., "Design of SPECT for BNCT to measure local boron dose with GAGG scintillator", Applied Radiation and Isotopes, 181, 110056 (2022). ←BNCT-SPECTの設計 个IAEAが編纂中の加速器BNCT設計指針(BNCT用SPECT装置)(2021年)から抜粋。 BNCTは現在、加速器中性子源を用いた加速器BNCTの普及が進められている(以前は原子炉を使用していた)。特に日本は、世界をリードしており、5つの加速器BNCTプロジェクトが動いている。我々のグループもその一つである。加速器BNCTは、小型で安価であり、各県に1台以上の設置が見込まれる。つまりそれに必要なBNCT-SPECT装置は、日本で50台程度、世界では少なくともその10~100倍の市場があると考えられる。我々は、基礎研究を終え、プロトタイプの製作を行っている。今後パートナー企業と実機の製作を行っていきたいと考えている。 # **Medical devices** # SPECT system for boron neutron capture therapy (BNCT-SPECT) for real-time measurement of therapeutic effect Principal Investigator Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, The University of Osaka ### **Professor Isao MURATA** **Project Outline** Boron Neutron Capture Therapy(BNCT) is a promising and quite new cancer therapy. However, the therapeutic effect cannot be known easily during the treatment (neutron irradiation). The basic technique for that is to measure promptly emitted 478 keV gamma-rays from boron neutron capture (BNC) reaction with a SPECT system. However, it is known to be very difficult. This is due to the fact that BNCT is a treatment, not a diagnosis such as MRI and CT. More practically, ①Primary radiation for BNCT is neutron, however, the SPECT measures secondary radiation of extremely weak 478 keV gamma-rays. In addition, ② The SPECT system cannot move 360 deg. like X-ray CT due to various constraints, e.g., a patient should contact the neutron exit wall. As the result, it is known that the technical difficulty is critically serious, and it is thus very hard to obtain accurate images. Now, Japan lead BNCT in the world and Japan has first started an accelerator based BNCT in a hospital. Considering this situation, we should put the SPECT system for BNCT (BNCT-SPECT) into practical use in BNCT treatment as soon as possible. ### Present status for difficulties ① and ② ①Examination carried out under the support by the following two JSPS KAKENHI. The tables below show the design result which meets requirements of BNCT clinical doctors (spatial resolution of 5 mm and accuracy of 5 %) first in the world. - •Grant-in-Aid for Scientific Research (B), Grant Number 22360405 (2010~2014), I. Murata - •Grant-in-Aid for Scientific Research (B), Grant Number 15H04242 (2015∼2019), I. Murata ②Supported by 「Masason Foundation」, reconstruction of image was successfully performed even in case of limited projection angles of 180 deg. with Bayesian estimation. (H. Inamoto et al., "A New Image Reconstruction Technique with Limited View-angle Projection Data for BNCT-SPECT", 2020 IEEE NSS MIC, Boston, USA, M-08-149 (2020).) ③For further improvement of the accuracy, we employed coincidence, anti-coincidence and veto detector simultaneously to increase S/N ratio, (Patent pending, 2022-210091, "SPECT system for real-time measurement of local boron dose for BNCT") ④Under the support of METI, Japan, the prototype SPECT system is being developed now. In parallel, the image reconstruction system was investigated to reproduce images with practically measured data. BNCT 10 B is accumulated only in tumor cells by administering boron drug, BPA and/or BSH. Then neutrons are irradiated to induce the neutron- 10 B reaction above to emit α and 7 Li particles, which kill the tumor cells selectively, because ranges of the emitted particles are as long as cell size. It means, if 10 B is accumulated only in tumor cells, only the tumor cells are killed making adjacent normal cells survive. BNCT is thus a sharper therapy than other radiotherapies, i.e., called the **only tumor-cell selective therapy**. $\frac{\text{BNCT-SPECT}}{\text{decays creating a 478 keV gamma-ray promptly. By measuring the gamma-ray with a SPECT system to estimate the three dimensional distribution (image) of the number of above reactions, that is, the therapeutic effect of BNCT.}$ | | | | | | | | Table 6 Design result and performance. | | | | |---|-------------------------------|-------|-------------------|--------------------------------------|-------------|----------------------|--|--------------------------------|------|--| | | | | | | | Des | sign item | Design result | | | | Table Design examples of SPECT for BNCT in the world. | | | | | | | Material | GAGG(Ce) | _ | | | Author | Institute | Year | Detector element | | ļ | Scintillator | Dimensions | 3.5 x 3.5 x 30 mm ³ | | | | | | | Material | Size | Material | | Material | Tungsten | | | | Kobayashi, T. | Kyoto University | 2000 | CdTe | (not mentioned) | Tungsten | Collimator | Hole pitch | 4.0 mm | | | | Ishikawa, M. | Hiroshima University | 2001 | BGO | 5 mm Φ x 5 cm | Heavy metal | | Hole diameter | 3.5 mm | | | | Minsky, D.M. | San Martin University | 2011 | LaBr ₃ | $1 \text{ in x } 1 \text{ in } \phi$ | Lead | | Length | 26 cm | | | | Hales, B. | Tokyo Institute of Technology | 2017 | CZT | 1 x 1 x 1 cm | Lead | Design goal item | | Performance (Go | oal) | | | I. Kanno | Kyoto University | 2019 | TIBr | 0.5x0.5x1cm | Tungsten | Statistical accuracy | | 4.4 % (5 %) | _ | | | Murata, I.*1 | Osaka University | 2019 | GAGG | 3.5 x 3.5 x 30 mm | Tungsten | Spatial resolution | | 5.1 mm (5 mm) | | | | 1 From the pre | sent result, *2 From detector | pitch | | | | | | | | | ←Design and performance of BNCT-SPECT, cited from the paper: I. Murata et al., "Design of SPECT for BNCT to measure local boron dose with GAGG scintillator", Applied Radiation and Isotopes, **181**, 110056 (2022). \uparrow Cited from design criteria of BNCT compiled by IAEA (2021). We aim to spread BNCT by employing an accelerator based neutron source instead of nuclear reactor. Japan is leading in BNCT and five projects are underway in Japan, including our group. Accelerator based BNCT system is small and cheap compared to conventional nuclear reactor based BNCT, and thus one machine in one prefecture is aimed. It means, 50 BNCT-SPECT machines are required inside Japan and ten to hundred times are required commercially in the world. We completed the basic performance characterization of the machine and now making the prototype machine to verify the real performance. Then we are aiming at producing the real machine with a partner company.